Oxford BioDynamics plc – Dissecting super-enhancer hierarchy based on chromatin interactions

Recent studies have highlighted super-enhancers (SEs) as important regulatory elements for gene expression, but their intrinsic properties remain incompletely characterized. Through an integrative analysis of Hi-C and ChIP-seq data, here we find that a significant fraction of SEs are hierarchically organized, containing both hub and non-hub enhancers.

Here we develop an approach to dissect the compositional organization of SEs based on long-range chromatin interactions. We find that a subset of SEs exhibits a hierarchical structure, and hub enhancers within hierarchical SEs play distinct roles in chromatin organization and gene activation. Our findings also identify a critical role for CTCF in organizing the structural (and hence functional) hierarchy of SEs.

DirectorsTalk caught up with Alexandre Akoulitchev the CEO of Oxford BioDynamics plc (LON:OBD) for his thoughts on this paper:

Wonderfull paper in Nature Communications from Dana-Farber Cancer Institute, Harvard Medical School, Howard Hughs Medical Institute and several other leading Institutions in US.

Very encouraging to see that the field of structure-function of genome 3D architecture is maturing and bringing new insights into complexities and regulatory context of genome regulation.

When analysed in cell lines a broad network of almost 30, 000 enhancers, generally implicated in transcriptional regulation of gene promoters, shows intricate hierarchical organisation. At the top of that pyramid are super-enhancers with the properties of hierarchical hubs – just less then 2% of all enhancer network. Those hubs show clear evidence for protein machinery of long range chromosomal interactions – chromosome conformation signatures, and evolutionary high pressure for enrichment of genetic variants – SNPs and eQTLs, associated with diseases, critical effects on gene expression (very elegant CRISPR interference and editing experiments) and control of cellular phenotype.

Fascinating to see, that subset of blood based eQTLs is most significantly associated with the hubs, when compared with any other eQTLS.

This systematic study gives further scientific support to technological approaches developed and deployed today by Oxford BioDynamics plc : blood-based selective monitoring of genome architecture through the hubs of long range chromosome conformation signatures have been delivering robust and validated stratification signatures in patient patient cohorts for several diseases indications.

Click to view all articles for the EPIC:
Or click to view the full company profile:
    Facebook
    Twitter
    LinkedIn
    Oxford BioDynamics

    More articles like this

    Oxford BioDynamics

    How are EpiSwitch markers detected?

    Introduction: Getting the basics right Oxford BioDynamics’ (OBD) EpiSwitch™ biomarker discovery platform combined with their newly enhanced detection technology gives the company valuable quantitative insights into chromosome conformations (DNA protein complexes) that regulate normal and disease

    Oxford BioDynamics

    What is EpiSwitchTM and how is it used?

    Oxford BioDynamics’ EpiSwitch™ technology is based on epigenetics, mechanisms that alter gene expression without altering the underlying DNA sequence and whose deregulation plays a role in the development of cancer, autoimmune, and neurologic diseases. Although DNA

    Oxford BioDynamics

    Sanders-Brown research highlights form of severe dementia

    The long-running study on aging and brain health at the University of Kentucky’s Sanders-Brown Center on Aging (SBCoA) Alzheimer’s Disease Center has once again resulted in important new findings – highlighting a complex and under-recognized form

    Oxford BioDynamics

    Researchers identify new genetic defect linked to ALS

    Mutations in the UBQLN2 gene, known to cause amyotrophic lateral sclerosis (ALS), promote the buildup of toxic waste in brain cells by preventing the normal function of two cellular degradation mechanisms, a study has found. In addition to its known role

    Oxford BioDynamics

    New questions about Covid-19

    The coronavirus is known with certainty that it emerged in China in November and has since spread to almost the entire world, where it has infected more than 5 million people and killed at least 356,000. Older adults are more

    Oxford BioDynamics

    EpiSwitch technology selected as biomarker platform for COVID-19

    Oxford BioDynamics’ EpiSwitch technology has been chosen as the biomarker platform for prognostic and predictive profiling of COVID-19 patients in the GETAFIX clinical study.Institute of Infection, Immunity and Inflammation, University of Glasgow, and NHS Scotland are

    Oxford BioDynamics

    Rare Diseases Clinical Research Network Opens Online Survey on COVID-19

    The Rare Diseases Clinical Research Network (RDCRN) has opened an online survey to better understand how the COVID-19 outbreak is affecting people with rare diseases, their families, and caregivers. Survey questions cover a patient’s physical and mental health, supply of treatments, and

    Oxford BioDynamics

    Pandemic moves ALS Awareness Month events and activities online

    ALS Awareness Month has been observed each May since 1992. But this year, the COVID-19 pandemic has forced supporters to rethink ways to raise funds and awareness for amyotrophic lateral sclerosis (ALS). In previous years, May has been full of fundraising and educational activities

    Oxford BioDynamics

    ALS Awareness

    “I think it’s time we stop, children, what’s that sound? Everybody look what’s going down.” That call for awareness comes from the song “For What It’s Worth” by Buffalo Springfield. The song’s writer, Stephen Stills, penned the lyrics in

    Oxford BioDynamics

    ALS Awareness Month This May

    Within weeks following my ALS diagnosis, I faced my first ALS Awareness Month. At the time, I was still figuring out exactly what I had and how to pronounce amyotrophic lateral sclerosis. Never mind trying to educate others about it. I hated

    Oxford BioDynamics

    Microarray Facility

    The purpose-built Oxford Biodynamics Array facility offers a complete sample processing service for Comparative Genome Hybridization (CGH) using the Agilent microarray platform.  Agilent’s flexible SurePrint technology produces high-quality arrays of 60-mer oligonucleotides in a range of

    Oxford BioDynamics

    EpiSwitch biomarker discovery platform

    INTRODUCTION • The EpiSwitch biomarker discovery platform detects systemic changes in the cellular genomic architecture using a microarray and PCR-based biomarker platform (Figure 1)1. It identifies and monitors chromosome conformation signatures (CCSs), key regulatory processes that