Leveraging the power of the epigenome to enable precision medicine

The last decade has seen an explosion in the application of precision medicine strategies in the life science industry, from drug development to clinical trial design. The ability to use molecular tools to identify patients who are more or less likely to respond to therapeutic intervention has tremendous commercial, social, and economic benefits. While several approaches using different molecular measurement techniques have been historically used with different levels of success, one that has gained particular traction in recent years is the assessment of epigenomic changes.

The packaging of chromosomal DNA plays a critical role in the epigenetic regulation of the whole genome. It ensures effective storage, access to genetic information and its regulation by the complex protein machinery utilized in gene expression. Known also as ‘gene loops’, ‘long-range chromosomal interactions’ and ‘chromatin domains’, chromosome conformations have been recognized as an essential high-level framework of epigenetic regulation imposed across the whole genome.

Oxford Biodynamics PLC (LON:OBD) was spun out from Oxford University in June 2007 with the aim of translating fundamental scientific advances into a commercialised platform technology and a new generation of biomarkers for cancer, ALS and other diseases.

Click to view all articles for the EPIC:
Or click to view the full company profile:
    Facebook
    Twitter
    LinkedIn
    Oxford BioDynamics

    More articles like this

    Oxford BioDynamics

    How are EpiSwitch markers detected?

    Introduction: Getting the basics right Oxford BioDynamics’ (OBD) EpiSwitch™ biomarker discovery platform combined with their newly enhanced detection technology gives the company valuable quantitative insights into chromosome conformations (DNA protein complexes) that regulate normal and disease

    Oxford BioDynamics

    What is EpiSwitchTM and how is it used?

    Oxford BioDynamics’ EpiSwitch™ technology is based on epigenetics, mechanisms that alter gene expression without altering the underlying DNA sequence and whose deregulation plays a role in the development of cancer, autoimmune, and neurologic diseases. Although DNA

    Oxford BioDynamics

    Sanders-Brown research highlights form of severe dementia

    The long-running study on aging and brain health at the University of Kentucky’s Sanders-Brown Center on Aging (SBCoA) Alzheimer’s Disease Center has once again resulted in important new findings – highlighting a complex and under-recognized form

    Oxford BioDynamics

    Researchers identify new genetic defect linked to ALS

    Mutations in the UBQLN2 gene, known to cause amyotrophic lateral sclerosis (ALS), promote the buildup of toxic waste in brain cells by preventing the normal function of two cellular degradation mechanisms, a study has found. In addition to its known role

    Oxford BioDynamics

    New questions about Covid-19

    The coronavirus is known with certainty that it emerged in China in November and has since spread to almost the entire world, where it has infected more than 5 million people and killed at least 356,000. Older adults are more

    Oxford BioDynamics

    EpiSwitch technology selected as biomarker platform for COVID-19

    Oxford BioDynamics’ EpiSwitch technology has been chosen as the biomarker platform for prognostic and predictive profiling of COVID-19 patients in the GETAFIX clinical study.Institute of Infection, Immunity and Inflammation, University of Glasgow, and NHS Scotland are

    Oxford BioDynamics

    Rare Diseases Clinical Research Network Opens Online Survey on COVID-19

    The Rare Diseases Clinical Research Network (RDCRN) has opened an online survey to better understand how the COVID-19 outbreak is affecting people with rare diseases, their families, and caregivers. Survey questions cover a patient’s physical and mental health, supply of treatments, and

    Oxford BioDynamics

    Pandemic moves ALS Awareness Month events and activities online

    ALS Awareness Month has been observed each May since 1992. But this year, the COVID-19 pandemic has forced supporters to rethink ways to raise funds and awareness for amyotrophic lateral sclerosis (ALS). In previous years, May has been full of fundraising and educational activities

    Oxford BioDynamics

    ALS Awareness

    “I think it’s time we stop, children, what’s that sound? Everybody look what’s going down.” That call for awareness comes from the song “For What It’s Worth” by Buffalo Springfield. The song’s writer, Stephen Stills, penned the lyrics in

    Oxford BioDynamics

    ALS Awareness Month This May

    Within weeks following my ALS diagnosis, I faced my first ALS Awareness Month. At the time, I was still figuring out exactly what I had and how to pronounce amyotrophic lateral sclerosis. Never mind trying to educate others about it. I hated

    Oxford BioDynamics

    Microarray Facility

    The purpose-built Oxford Biodynamics Array facility offers a complete sample processing service for Comparative Genome Hybridization (CGH) using the Agilent microarray platform.  Agilent’s flexible SurePrint technology produces high-quality arrays of 60-mer oligonucleotides in a range of

    Oxford BioDynamics

    EpiSwitch biomarker discovery platform

    INTRODUCTION • The EpiSwitch biomarker discovery platform detects systemic changes in the cellular genomic architecture using a microarray and PCR-based biomarker platform (Figure 1)1. It identifies and monitors chromosome conformation signatures (CCSs), key regulatory processes that